372 research outputs found

    Spontaneous phase oscillation induced by inertia and time delay

    Full text link
    We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is examined; revealed in numerical simulations is emergence of spontaneous phase oscillation without external driving, which turns out to be in good agreement with analytical results derived in the strong-coupling limit. Such self-oscillation is found to suppress synchronization and its frequency is observed to decrease with inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appropriate regions of the parameters.Comment: 5 pages, 6 figures, to pe published in PR

    Coupled Oscillators with Chemotaxis

    Full text link
    A simple coupled oscillator system with chemotaxis is introduced to study morphogenesis of cellular slime molds. The model successfuly explains the migration of pseudoplasmodium which has been experimentally predicted to be lead by cells with higher intrinsic frequencies. Results obtained predict that its velocity attains its maximum value in the interface region between total locking and partial locking and also suggest possible roles played by partial synchrony during multicellular development.Comment: 4 pages, 5 figures, latex using jpsj.sty and epsf.sty, to appear in J. Phys. Soc. Jpn. 67 (1998

    Phase ordering on small-world networks with nearest-neighbor edges

    Full text link
    We investigate global phase coherence in a system of coupled oscillators on a small-world networks constructed from a ring with nearest-neighbor edges. The effects of both thermal noise and quenched randomness on phase ordering are examined and compared with the global coherence in the corresponding \xy model without quenched randomness. It is found that in the appropriate regime phase ordering emerges at finite temperatures, even for a tiny fraction of shortcuts. Nature of the phase transition is also discussed.Comment: 5 pages, 4 figures, Phys. Rev. E (in press

    Reconstruction of Inclusions for the Inverse Boundary Value Problem with Mixed Type Boundary Condition

    Get PDF
    We consider an inverse boundary value problem for identifying the inclusion inside a known anisotropic conductive medium. We give a reconstruction procedure for identifying the in­clusion from the Dirichlet-Neumann map or the Neumann-Dirichlet map associated with the mixed type boundary condition

    Partially and Fully Frustrated Coupled Oscillators With Random Pinning Fields

    Full text link
    We have studied two specific models of frustrated and disordered coupled Kuramoto oscillators, all driven with the same natural frequency, in the presence of random external pinning fields. Our models are structurally similar, but differ in their degree of bond frustration and in their finite size ground state properties (one has random ferro- and anti-ferromagnetic interactions; the other has random chiral interactions). We have calculated the equilibrium properties of both models in the thermodynamic limit using the replica method, with emphasis on the role played by symmetries of the pinning field distribution, leading to explicit predictions for observables, transitions, and phase diagrams. For absent pinning fields our two models are found to behave identically, but pinning fields (provided with appropriate statistical properties) break this symmetry. Simulation data lend satisfactory support to our theoretical predictions.Comment: 37 pages, 7 postscript figure

    Scaling and singularities in the entrainment of globally-coupled oscillators

    Full text link
    The onset of collective behavior in a population of globally coupled oscillators with randomly distributed frequencies is studied for phase dynamical models with arbitrary coupling. The population is described by a Fokker-Planck equation for the distribution of phases which includes the diffusive effect of noise in the oscillator frequencies. The bifurcation from the phase-incoherent state is analyzed using amplitude equations for the unstable modes with particular attention to the dependence of the nonlinearly saturated mode α|\alpha_\infty| on the linear growth rate γ\gamma. In general we find αγ(γ+l2D)|\alpha_\infty|\sim \sqrt{\gamma(\gamma+l^2D)} where DD is the diffusion coefficient and ll is the mode number of the unstable mode. The unusual (γ+l2D)(\gamma+l^2D) factor arises from a singularity in the cubic term of the amplitude equation.Comment: 11 pages (Revtex); paper submitted to Phys. Rev. Let

    A moment based approach to the dynamical solution of the Kuramoto model

    Get PDF
    We examine the dynamics of the Kuramoto model with a new analytical approach. By defining an appropriate set of moments the dynamical equations can be exactly closed. We discuss some applications of the formalism like the existence of an effective Hamiltonian for the dynamics. We also show how this approach can be used to numerically investigate the dynamical behavior of the model without finite size effects.Comment: 6 pages, 5 figures, Revtex file, to appear in J. Phys.
    corecore